
Introduction

In classical paternity inference one excludes as many as
possible of the candidate males from paternity of a partic-
ular offspring using the available genetic data. If this pro-
cedure yields a single nonexcluded male, paternity is

assigned to that male. This is the basic methodology
underlying human parentage testing (Chakraborty et al.
1974), and there are several examples of the approach in
wild animal populations (e.g. Morin et al. 1994; Hogg &
Forbes 1997; Keane et al. 1997). However, exclusion by
itself may be insufficient to unambiguously resolve pater-
nity in a considerable proportion of paternity tests, even
using a series of very polymorphic codominant markers
where the probability of excluding an arbitrary unrelated
male is very high (Chakraborty et al. 1988). While exclu-
sion may be a useful starting point in paternity inference,
a statistically based method is needed to assign paternity
when multiple males are nonexcluded. The use of likeli-
hood (Edwards 1972) for inference of relationships using
genetic data was first explored in detail by Thompson
(1975, 1976a), who showed that likelihood is an efficient
approach to the evaluation of alternative relationships
between a given pair of individuals in inference of human
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pedigrees. However, the real problem of paternity infer-
ence in polygynous natural populations is subtly differ-
ent. At issue is the evaluation of alternative pairs of
individuals for a given relationship (father–offspring).

Meagher (1986) developed the likelihood approach of
Thompson when he analysed allozyme data from a natu-
ral population of the lily Chamaelirium luteum, awarding
paternity to the male with the highest log-likelihood ratio
or LOD score (the likelihood ratio is the likelihood of
paternity of a particular male relative to the likelihood of
paternity of an arbitrary male). If two or more males were
equally likely (usually because their genotypes were
identical), paternity was left unassigned. However,
Meagher did not assess the statistical confidence in the
paternities that were awarded. Foltz & Hoogland (1981)
carried out an analysis of paternity in prairie dogs
(Cynomys ludovicianus), also using allozyme data. In each
litter, to evaluate the likelihood of paternity for a series of
males, Foltz and Hoogland used the difference in the log-
likelihoods of the most-likely resident male and the
most-likely nonresident male (∆L), and chose an arbi-
trary threshold of four as a criterion for awarding pater-
nity to a nonresident male. As in Meagher’s (1986) study,
Foltz and Hoogland were not able to assess the signifi-
cance of their ∆L values, and they made a priori assump-
tions about the relative likelihood of paternity of resident
and nonresident males. Furthermore, Meagher (1986)
criticised ∆L on the basis that it is not a valid likelihood
ratio, because one hypothesis is not nested within the
other.

An alternative to categorical assignment of paternity to
the most-likely male is to assign paternity fractionally to
all nonexcluded males based on their relative likelihoods
of paternity (Devlin et al. 1988; Roeder et al. 1989; Smouse
& Meagher 1994). This approach allows population-level
patterns of paternity to be assessed, even when the dis-
criminatory power of marker loci is low. Smouse &
Meagher (1994) compared a maximum likelihood frac-
tional method against the earlier categorical analysis of
Meagher (1986) for the same Chamaelirium data set. The
correlation between individual male success as measured
by the two methods was significant but weak (r = 0.32).
Smouse and Meagher argue that the fractional method is
superior because it uses all the available data. However,
the method will systematically underestimate variance in
male reproductive success (Devlin et al. 1988; Smouse &
Meagher 1994). We have therefore concentrated on the
most-likely or categorical approach to paternity assign-
ment, which has much improved power with highly poly-
morphic DNA markers such as microsatellites, and has
the additional advantage that the resulting paternity data
can be used for analyses that require individual
parent–offspring links, such as the calculation of inbreed-
ing coefficients and heritabilities.

Published work on nonhuman paternity inference with
codominant markers does not deal with the problems
encountered when analysing the data typically obtained in
large-scale genetic studies of natural populations.
Paternity inference may be carried out with or without
maternal genetic data, possibly within the same study; the
two situations are statistically distinct and should be ana-
lysed appropriately. Statistical analysis should take
account of the number of candidate males and be able to
resolve paternity with confidence when not all candidate
males are sampled. At the genotypic level, individuals
may not be typed at every locus and, perhaps most impor-
tantly, the analysis should be robust to errors in typing.
Nearly all published studies of natural populations treat a
mismatch between a male and a putative offspring as con-
clusive evidence for exclusion of that male from paternity.
In practice, a mismatch could result either from a genuine
nonrelationship or from a laboratory typing error, a reality
acknowledged for some time in human pedigree analysis
(Thompson 1976b; Ashton 1980; Lathrop et al. 1983). When
microsatellite markers are used, mutations (Queller et al.
1993) and null alleles (Callen et al. 1993; Phillips et al. 1993;
Pemberton et al. 1995) may also generate mismatches
between genuine relatives at measurable frequencies.

In this paper, we develop the likelihood-based
approach of Thompson (1975, 1976a) and Meagher (1986).
Paternity is assigned to a particular male if the likelihood
ratio is large relative to the likelihood ratios of alternative
males. Similar to Meagher (1986), we express likelihood
ratios as LOD scores (i.e. the logarithm of the likelihood
ratio). Unfortunately, significance levels for LOD scores
cannot conveniently be derived analytically (Edwards
1972; Meagher 1986). However, Thompson & Meagher
(1987) showed that the ratio of the likelihood ratios of two
males is a true likelihood comparison of alternative
father–offspring relationships. Considering the two most-
likely males, we define the logarithm of the ratio of likeli-
hood ratios to be ∆ (equal to the difference in LOD scores),
and use computer simulation of paternity inference to
generate criteria for ∆ appropriate for paternity assign-
ment in the study population. The use of simulation of
paternity inference in order to evaluate the significance of
LOD scores was also suggested by Taylor et al. (1997).

A statistical pitfall of using conventional likelihood
ratios to assess paternity has been pointed out by
Thompson (1976a, 1976b) and Thompson & Meagher
(1987). If there exist in the population full sibs of the off-
spring whose paternity is being tested, and no genetic
data are available from the mother, nonexcluded full sibs
on average have a higher likelihood of paternity than the
true father. We examine the effect of relatives of the off-
spring on paternity inference with and without maternal
genetic data, and compare this with the effect of relatives
of the true father.
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We also demonstrate our approach using genetic data
from the intensively studied red deer (Cervus elaphus)
population on the island of Rum, Scotland. For con-
venience, we refer throughout to paternity inference;
however, our system is equally applicable to inference of
maternity (for example Jones & Avise 1997).

Materials and methods

Likelihood in paternity testing

Likelihood analysis takes data as a starting point, and
evaluates hypotheses given that data (Edwards 1972). The
likelihood L of a hypothesis H given data D can be written
L(H|D). The likelihood of one hypothesis (e.g. H1) is
always evaluated relative to another (e.g. H2). This is the
likelihood ratio, written as L(H1,H2|D):

P(D H1)
L(H1, H2 D) = –––––––– (1)

P(D H2)

where P(D|Hi) is the probability of obtaining data D
under hypothesis Hi. In the context of paternity inference,
the data D are the genotypes of offspring, mother, and
alleged father at a particular locus. The hypothesis of
interest H1 is that the alleged father is the true father, and
this is tested against hypothesis H2 that the alleged father
is an unrelated individual selected at random from the
population. The following interpretation (eqn 2 – eqn 4) is
based on that of Meagher (1986), and assumes that the
mother’s genotype is known.

Let gm, ga and go represent the genotypes of mother,
alleged father and offspring, respectively, at a given locus.
The likelihood that the mother and alleged father are the
parents of the offspring can then be expressed:

L(H1 gm,ga,go) = T(go gm,ga).P(gm).P(ga) (2)

Here, T(go|gm,ga), the probability of the offspring’s geno-
type given the genotypes of the mother and alleged father,
is the Mendelian segregation or transition probability. P(gm)
and P(ga) are the frequencies of the mother’s and alleged
father’s genotypes in the population. The likelihood that the
mother is the parent of the offspring and the father is a ran-
domly chosen individual from the population is expressed:

L(H2 gm,ga,go) = T(go gm).P(gm).P(ga) (3)

where T(go|gm) is the probability of the offspring’s geno-
type given the mother’s genotype. The likelihood ratio
(eqn 2 divided by eqn 3), represents how much more
likely it is that the alleged father, rather than an arbitrary
male, passed his genes to the offspring (Aitkin 1995).

T(go gm,ga).P(gm).P(ga) T(go gm,ga)
L(H1, H2 gm,ga,go) = –––––––––––––––––––- = –––––––––

T(go gm).P(gm).P(ga) T(go gm)
(4)

The likelihood ratios for all compatible genotypic combi-
nations at a codominant autosomal locus are presented in
Table 1. (Note that eqn 4 is referred to as the Paternity
Index (PI) in human paternity testing (Pena &
Chakraborty 1994)).

In cases where the mother’s genotype is unknown, the
likelihood ratio is different:

T(go ga).P(ga) T(go ga)
L(H1, H2 ga,go) = –––––––––––– = ––––––– (5)

P(go).P(ga) P(go)

Here, the denominator, P(go), is the frequency of the off-
spring’s genotype. Allele frequencies may only be used
to estimate genotype frequencies if Hardy–Weinberg
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Table 1 Likelihood ratios for all compatible mother–alleged father–offspring trios. X represents any allele other than B; Y represents any
allele that is neither B nor C. The frequencies of alleles B and C are denoted b and c. The likelihood ratio, L (H1,H2), is the probability of the
offspring’s genotype given the mother’s and alleged father’s genotypes, T (go|gm,ga), divided by the probability of the offspring’s geno-
type given the mother’s genotype, T (go|gm). A similar table is shown in more condensed form in Brenner (1997)

Offspring’s Alleged father’s Mother’s
genotype (go) genotype (ga) genotype (gm) T (go|gm,ga) T (go|gm) L (H1,H2)

BB BB BB 1 b 1/b
BB BX BB 1/2 b 1/2b
BB BB BX 1/2 b/2 1/b
BB BX BX 1/4 b/2 1/2b
BC BB CC 1 b 1/b
BC BX CC 1/2 b 1/2b
BC BB CY 1/2 b/2 1/b
BC BX CY 1/4 b/2 1/2b
BC BB BC 1/2 (b + c)/2 1/(b + c)
BC BY BC 1/4 (b + c)/2 1/2(b + c)
BC BC BC 1/2 (b + c)/2 1/(b + c)



equilibrium holds. The likelihood ratios for paternity
inference without maternal genetic information, assum-
ing Hardy–Weinberg equilibrium, are presented in
Table 2.

When several unlinked marker loci are used in pater-
nity inference, the likelihood ratios derived at each locus
may be multiplied together and the natural (loge) loga-
rithm taken. Meagher (1986) terms the natural logarithm
of the combined likelihood ratio the LOD score.
[Meagher’s definition of the LOD score differs from that
used in genetic mapping, where the LOD score is
defined as the common (log10) logarithm of the likeli-
hood ratio. For consistency with standard likelihood
analysis (Edwards 1972), and with previous work in
paternity inference (e.g. Thompson 1975), we follow
Meagher’s (1986) definition.] LOD score of zero implies
that the alleged father is equally as likely to be the father
of the offspring as a randomly selected male. A positive
LOD score implies that the alleged father is more likely
to be the father of the offspring than a randomly selected
male; negative LOD scores may occur if the alleged
father and offspring share a particularly common set of
alleles.

Mismatches and typing errors

If genetic data are perfect, a mismatch at a single locus
between alleged father and offspring can be logically
treated as a paternity exclusion. However, data are often
not perfect, so it is unwise to exclude males entirely from
paternity on this basis. A mismatch can result not only
from nonpaternity but also from erroneously typed pater-
nal, maternal or offspring genotypes, or from marker
mutation or null alleles (see the Discussion). The use of a
likelihood approach allows us to introduce a parameter,
the error rate, which takes account of potential imperfec-
tions in the data. We define an error to be the replacement
of the true genotype at a particular locus in an individual

with a random genotype. Errors may occur in the geno-
types of offspring, mother or alleged father, or in some
combination of the three. The derivations of likelihood
ratios incorporating errors are shown in Appendix 1.
These likelihood ratios are used, assuming Hardy–
Weinburg equilibrium, for all analyses presented in this
paper.

Assignment of paternity using LOD scores

In order to discriminate between nonexcluded males, we
define a statistic ∆ as the difference in LOD scores
between the most-likely male and the next most-likely
male. Let n be the number of candidate males with a LOD
score greater than zero. The LOD score of male i is
denoted LODi, and the males are ranked such that
LODi ≥ LODi+1 for 1 ≤ i < n (so, for example, the LOD score
of the most-likely male is denoted LOD1). Then ∆ is
defined as follows:

n ≥ 2, ∆ = LOD1 – LOD2

n = 1, ∆ = LOD1

n = 0, ∆ undefined

Without a threshold LOD score of zero, ∆ is sensitive to
LOD2. If LOD2 is very negative (typically when all candi-
date males except the most-likely male mismatch the off-
spring at several loci), ∆ is large whatever the value of
LOD1. A threshold LOD score of zero stabilizes ∆ because
it always lies between zero and LOD1.

Simulation of paternity inference

We use simulations to assess the significance of ∆ values.
The simulation analysis of the program CERVUS emulates
the steps of paternity inference using allele frequencies at
loci screened in a given study population (Fig. 1). Parallel
simulations are carried out for paternity inference with
and without maternal genetic data.
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Offspring’s Alleged father’s
genotype (go) genotype (ga) T (go|ga) P (go) L (H1,H2)

BB BB b b2 1/b
BB BX b/2 b2 1/2b
BC BB c 2bc 1/2b
BC BY c/2 2bc 1/4b
BC BC (b + c)/2 2bc (b + c)/4bc

Table 2 Likelihood ratios for all
compatible alleged father–offspring pairs,
in the absence of a genotyped mother. X
represents any allele other than B; Y
represents any allele that is neither B nor
C. The frequencies of alleles B and C are
denoted b and c. Likelihood ratios are
calculated on the basis that
Hardy–Weinberg equilibrium holds. The
likelihood ratio, L (H1,H2), is the
probability of the offspring’s genotype
given the alleged father’s genotype,
T (go|ga), divided by the probability of the
offspring’s genotype, P (go). A similar table
is shown in more condensed form in
Brenner (1997)



Assuming Hardy–Weinberg equilibrium, a maternal
genotype and a paternal genotype are generated from
allele frequencies observed in the study population, and
an offspring genotype is derived by Mendelian sampling
of the parental alleles. Genotypes are also generated for a
number of unrelated candidate males. The genotypic data
for all individuals are then altered to reflect the existence
of unsampled males, missing loci and incorrectly typed
loci, according to the values of the parameters described
below. Next, each candidate male is considered in turn as
the alleged father, beginning with the true father. LOD
scores are calculated for all males for whom genetic data
exist. Once all males have been considered, the most-
likely and second-most-likely males are identified and the
∆ score calculated (all males with LOD scores of 0 or less
are ignored). The value of ∆ is recorded along with the sta-
tus of the most-likely male (i.e. whether or not this is the
true father).

Genetic data are generated and paternity tests carried
out for a large number of simulated offspring in order to
generate distributions of ∆ (Fig. 2). A total of 10 000 tests is
sufficient in most cases. The following parameters
(Table 3) are included in the simulation model in order to
make simulated genetic data realistic.

Number of candidate males. The average number of males
that are candidates for paternity of each offspring. The
number of candidate males can be estimated from field
data, and includes males that are not sampled. Candidate
males other than the true father are assumed to be unre-
lated to the mother-father-offspring trio (the effect of
relaxing this assumption is explored in the Results).

Proportion of candidate males sampled. The average fraction
of candidate males for whom genotypic data are avail-
able. The proportion of sampled males can be estimated
from field data. The true father falls into this category
with the same probability as any other candidate male.

Proportion of loci typed. The fraction of loci typed, averaged
across all loci and individuals. Missing genotypes are
scattered at random across loci and individuals, including
the mother, true father and offspring. The proportion of
loci typed can readily be calculated from the genetic data
used to estimate allele frequencies.

Error rate. The fraction of loci typed incorrectly, averaged
across all loci and individuals. An error is defined as the
replacement of the true genotype at a given locus with a
genotype selected at random under Hardy–Weinberg
assumptions. Under this definition, an erroneous geno-
type will sometimes be the same as the true genotype. If
mother–offspring pairs are known from field data, the
error rate can be estimated from the frequency of mis-
matches (i.e. no alleles in common) between mothers and
their offspring, bearing in mind that as defined not all
errors alter the observed genotype, and that not all alter-
ations of genotype can be detected as mother–offspring
mismatches (see Appendix 2). Note that the error rate
parameter is used in the simulation of paternity inference
both to generate simulated genetic data and in the calcula-
tion of likelihoods (eqn 6 – eqn 9).

Identifying critical values of ∆

The final stage of the simulation is to find critical values
of ∆ so that the significance of ∆ values found in paternity
inference in the study population can be tested. The
program compares the distribution of ∆ scores for cases
where the most-likely male was the true father with that
for cases where the most-likely male was not the true
father (Fig. 2). Assuming, as an example, that a criterion
is required for ∆ which gives 95% confidence, the pro-
gram identifies the value of ∆ such that 95% of ∆ scores
exceeding this value are obtained by true fathers. If the
program fails to find such a value of ∆ (typically because
the resolving power of the markers is insufficient), the
critical value of ∆ is set to an arbitrary high value of 99.99.
When a male fulfilling the 95% confidence criterion is
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Fig. 1 A flow chart illustrating the operation of the C E RV U S

program’s simulation of paternity inference. Boxes indicate
repeated loops. Simulation of paternity inference where mothers
are unsampled is carried out in a parallel simulation.



assigned paternity of an offspring, we describe the
father–offspring relationship as a 95% confident paternity.

Confidence levels can be thought of as levels of tolerance
of ‘false-positive’ paternities, or paternities assigned to
males who match by chance (Type I Error). For some pur-
poses the number of paternities obtained may be most
important, while in other situations very accurate paternity
assignment may be required. The program therefore calcu-
lates separately relaxed and strict confidence levels. In this
paper we interpret relaxed confidence as 80% and strict
confidence as 95%. For each level of confidence, the pro-
gram shows the percentage of simulated paternity tests in
which the ∆ score of the most-likely male exceeded the crit-
ical value of ∆ (i.e. the percentage of tests in which pater-
nity was assigned), a statistic we refer to as the success rate.

Red deer on Rum

The unmanaged red deer population in the North Block
of the island of Rum (Inner Hebrides, Scotland) has been
the focus of intensive study since 1971. Detailed descrip-

tions of the study site are available in Clutton-Brock et al.
(1982) and Clutton-Brock & Albon (1989). A total of 1168
individually monitored deer have been typed at up to
three protein and nine microsatellite loci (details in
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Fig. 2 Histograms of ∆ scores generated
by simulation of paternity inference using
allele frequencies from Rum red deer and
the parameter values shown in Table 3. In
each plot the histogram of Nt cases where
the most-likely male is the true father
(filled bars) is interleaved with the
histogram of Nu cases where the most-
likely male is not the true father (white
bars). Critical values of ∆ are calculated
from the degree of overlap of the two
distributions shown in each plot. Critical
values for 80% and 95% confidence are
listed in Table 5. Plot (a) is from a
simulation when the mother was sampled,
and plot (b) is from a simulation when the
mother was unsampled. ∆ categories are
labelled with their upper limits.

Table 3 The parameters used in simulation of paternity inference
with the C E RV U S program, and the values used in simulations
for Rum red deer presented in this paper. The number of candi-
date males and the proportion of males sampled are average val-
ues from the ruts between 1981 and 1995 that gave rise to the
calves born 1982–96. The proportion of loci typed and the error
rate are average values across the 12 loci screened. See text for
details on choice of parameter values

Parameter Value used

Number of candidate males 75
Proportion of candidate males sampled 0.65
Proportion of loci typed 0.854
Rate of typing error 0.01
Number of tests 10,000
Relaxed confidence level 80%
Strict confidence level 95%



Table 4), and individuals were on average typed at 85% of
loci. Protein genotyping protocols are described in
Pemberton et al. (1988), and microsatellite genotyping
procedures are the same as those described by Bancroft
et al. (1995) for Soay sheep. Genotypic frequencies at all
loci conform to Hardy–Weinberg expectations.

The multiplication of likelihood ratios over several loci
assumes that the loci segregate independently. This
assumption is violated if any pair of loci is in linkage dise-
quilibrium. For example, high values of linkage disequi-
librium are likely for a series of loci known to lie within a
single gene cluster (e.g. the Major Histocompatibility
Complex) or in zones of hybridization between two popu-
lations, subspecies or species (Barton & Gale 1993). In red
deer, we are aware that two pairs of the microsatellite
markers used in our analysis each share a linkage group.
However, neither pair is thought to be tightly linked (M.
Tate, personal communication), and loose linkage of one
or two pairs of markers is not thought to seriously bias
multilocus likelihood calculations (Meagher 1986). When
calculating LOD scores, we therefore treat all loci as if
they segregate independently (i.e. we assume that all
pairs of markers are in linkage equilibrium).

Allele frequencies from the total Rum sample were
used for all the simulation results presented below.
Paternity was analysed for a subset of 875 calves born
between 1982 and 1996. Red deer have an annual rutting
season in the autumn, and single calves are born the fol-
lowing spring. In each year, the candidate males for pater-
nity of each calf are all males classified as behaviourally
active at any time during the rut preceding the birth of

that calf. Typically this includes any male 3-years old or
more observed in the study area at this time. Stags aged
2 years or less have never been observed to obtain
matings, and in practice mating opportunities for stags
less than 5-years old are extremely infrequent
(F. Guinness, unpublished data). The paternity inference
procedure is thus conservative, in that it considers any
male potentially able to mate as a candidate male. In ruts
between 1981 and 1995 (giving rise to the calf cohorts
1982–96), there was an average of 75 candidate males, of
which 65% were sampled. These values were used in the
simulation.

Where maternal genetic data are used in inferring
paternity, maternity is based on field observations.
Inaccuracies in assignment of maternity are likely to show
up as mismatches across multiple loci, and no such cases
have been found (Pemberton et al. 1988, 1992; our unpub-
lished data). The sporadic mismatches between maternal
and offspring genotypes that do occur are interpreted as
errors in the typing process. Our estimate for the overall
rate of typing error, given that many errors go undetected,
is 1% (see Appendix 2).

Results

In this section, we explore the results generated by the
CERVUS program. We examine in turn the statistical proper-
ties of ∆, the repeatability of simulation results, the impor-
tance of typing errors, the effect of varying simulation
parameters on the predicted resolving power of markers
and the impact of relatives on paternity inference. Finally,
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Table 4 The three protein loci (top) and nine microsatellite loci (bottom) used to generate the simulation data presented in this paper. Oar
and MAF microsatellites are randomly cloned sequences from domestic sheep (Ovis aries); Cel microsatellites are randomly cloned
sequences from Rum red deer (Cervus elaphus); TGLA94 is a randomly cloned microsatellite sequence from domestic cattle (Bos taurus).
Expected heterozygosity was calculated using eqn 8.4 of Nei (1987)

Number of Number of Expected
Locus name alleles genotypes heterozygosity Reference

Mannose phosphate 2 890 0.257 Pemberton et al. (1988)
isomerase
Isocitrate 2 893 0.500 Pemberton et al. (1988)
dehydrogenase
Transferrin 2 702 0.428 Pemberton et al. (1988)
OarFCB193 11 1044 0.761 Buchanan & Crawford (1993)
OarFCB304 9 1102 0.789 Buchanan & Crawford (1993)
CelJP15 10 1107 0.837 J. Pemberton, unpublished data
CelJP27 6 1059 0.691 J. Pemberton, unpublished data
CelJP38 8 999 0.786 J. Pemberton, unpublished data
MAF35 7 994 0.673 Swarbrick et al. (1991)
MAF109 6 1056 0.751 Swarbrick & Crawford (1992)
OarCP26 13 1086 0.722 Ede et al. (1995)
TGLA94 9 1042 0.808 Georges & Massey (1992)



we apply critical ∆ scores from the simulation to the red
deer data set. All simulations use the allele frequencies for
Rum red deer screened at the loci described in Table 4.

Distribution of ∆

The distributions of ∆ scores, from a simulation of pater-
nity inference using the parameter values listed in Table 3,
are shown in Fig. 2. In general, pairs of distributions of ∆
for true fathers and nonfathers tend to fall into three cate-
gories, depending on the ratio of the number of true
fathers, Nt (filled bars in Fig. 2), to nonfathers, Nu (white
bars):

1 Nt > Nu. The critical value is low, and success rate is
high (e.g. Fig. 2a). In the special case of Nt/(Nt + Nu)
being greater than or equal to the confidence level, the
critical value is set to zero.

2 Nt ≈ Nu. The critical value takes an intermediate value,
but success rate is heavily dependent on the degree of
overlap of the two distributions. If the overlap is nar-
row, more paternities can be assigned than if the over-
lap is wide.

3 Nt < Nu. The critical value is high, and the success rate
is low (e.g. Fig. 2b).

Which of these three scenarios occurs varies according
to whether or not the mother is sampled, the allele fre-
quencies and the parameter values used in the simulation.
Nt + Nu may be less than the total number of paternity
tests carried out, as under certain parameter conditions
there may be a proportion of tests where no male has a
LOD score greater than zero.

The distributions shown in Fig. 2 were used to derive
critical ∆ scores and the corresponding predicted success
rates (Table 5). ∆ criteria were larger when mothers were
not sampled and larger for higher confidence. Success
rates were smaller when mothers were not sampled, and
smaller for higher confidence.

Repeatability of simulation results

The simulation generates repeatable results with 10 000
paternity tests. More than 95% of critical ∆ values were

within 10% of the mean critical ∆ value, based on 16 runs
using the parameter values shown in Table 3. From the
same runs, 95% of predicted success rates were within 2%
(expressed as a percentage of paternity tests resolved) of
the mean predicted success rate. In other words, the varia-
tion in critical ∆ values that did occur did not lead to large
variations in predicted success rates. Critical ∆ values at
the lower end of the range did not give rise to many Type
I Errors (incorrect assignment of paternity), and critical ∆
values at the upper end of the range did not give rise to
many Type II Errors (failure to assign paternity).

The ranges of critical ∆ values and predicted success
rates described applied to 80% and 95% confidence, and
to simulations with and without mothers sampled. In
practice, the ranges were a little narrower at 80% confi-
dence. If a very high level of accuracy is required, or if
very high levels of confidence are demanded (e.g. 99% or
more), simulations with more than 10 000 paternity tests
may be carried out at a cost of increased computing time.

In the following sections describing simulation results,
we concentrate on the comparison between paternity
inference with and without sampled mothers at 80% con-
fidence. In all cases, similar patterns were observed at
95% confidence.

Importance of typing errors

An error rate of zero ensures that any mismatch is treated
as a paternity exclusion, and the likelihood equations
then reduce to eqn 4 and eqn 5. Given that laboratory data
are rarely error free, is it satisfactory or prudent to ignore
errors in paternity inference? We examined the impact of
errors on confidence, and whether taking account of
errors alters success rates.

If simulations and paternity inference in the study pop-
ulation are carried out on the basis that genetic data are
error free, Fig. 3 shows the true confidence in paternities
allegedly assigned at 80% confidence for simulated genetic
data including typing errors at various rates. In all cases,
assuming genetic data to be error free led to overestimates
of the confidence in paternities assigned when data
include errors. For example, when mothers were unsam-
pled and the true error rate was 2%, paternities assigned
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Mother sampled Mother unsampled
Simulation results
(n = 10 000) 80% 95% 80% 95%

Critical value of ∆ 1.13 2.78 1.49 3.15
Proportion of paternities 59.30% 28.86% 25.33% 4.35%

Table 5 The critical ∆ scores and number
of red deer paternity tests predicted to be
resolved by simulation using the program
C E RV U S. Parallel simulations were carried
out for paternity inference with sampled
mothers and unsampled mothers. Relaxed
(80% confidence) and strict (95%
confidence) criteria are shown, along with
the proportion of paternity tests (of 10 000)
in which a male fulfilled the required
criterion (i.e. was awarded paternity)



with an apparent confidence of 80% (based on simulations
assuming no errors) had a true confidence of 74%.

Success rate may be improved by allowing for errors,
because a true father that was previously excluded on
account of typing error may now have a LOD score suffi-
cient to be identified as the father. On the other hand,
allowing for typing errors may mean that unrelated
candidate males that were previously excluded on
account of mismatches at just one or two loci may now

have similar LOD scores to the true father, meaning that
the LOD score of the true father is no longer sufficiently
large to award paternity. The first of these effects predom-
inates when there is redundancy of information across
marker loci, while the second effect predominates when
the resolving power of markers is limited. Figure 3 sug-
gests that at least some of the additional paternities that
may be awarded by ignoring errors are of inferior confi-
dence. For example, ‘80% confident’ paternities that were
awarded by ignoring errors were not necessarily secure at
80% confidence when the correct simulation criteria were
applied.

Success of paternity inference

The responses of success rates to parameter changes are
shown in Fig. 4, expressed as a percentage of paternity
tests resolved with 80% confidence. In each case one
parameter was varied while the others were held constant
at the values shown in Table 3. Simulations were carried
out assuming 65% of males were sampled (except Fig. 4b
where this parameter itself was varied). Thus success
rates were unlikely to greatly exceed 65%, though false-
positive paternities, especially at lower levels of confi-
dence, can push the percentage a little higher.

Number of candidate males. Figure 4a shows the effect of
varying the number of candidate males. Fewer paternity
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Fig. 3 The effect of ignoring typing error on confidence of pater-
nity inference with error-prone genetic data. Simulation criteria
from a simulation with an error rate of zero were applied to sim-
ulated data containing errors at rates from 1 to 4%; likelihood cal-
culations in all cases used an error rate of zero. The true
confidence was calculated as the ratio Nt/(Nt + Nu). The dotted
line represents the null hypothesis of no effect of ignoring typing
error on confidence. Values used for other simulation parameters
are shown in Table 3.

Fig. 4 The effect on the predicted success
of paternity inference on varying the
main parameters included in the model.
(a) number of candidate males, (b)
proportion of males sampled, (c)
proportion of loci typed, and (d) rate of
typing error. In each case, the percentage
of paternity tests resolved at 80%
confidence is shown, with all other
parameters being held at the values in
Table 3. The values used for simulation of
the real Rum red deer data are indicated
by a vertical line. Graph (a) uses a log
scale on the x-axis. The legend is as for
Fig. 3.



tests were resolved as the number of candidate males
increased. Similar success rates were obtained when
choosing between 100 candidate males with sampled
mothers and choosing between 10 candidate males when
mothers were unsampled, and this ratio is maintained
across most of the chart. If the number of candidate males
was large, maternal genetic data were essential to assign-
ment of paternity with confidence of 80% using the set of
markers screened in Rum red deer.

Proportion of candidate males sampled. Figure 4b shows the
effect of varying the proportion of candidate males sam-
pled. Success rates increased as the proportion of sampled
candidates males increases.

Proportion of loci typed. Figure 4c shows the effect of vary-
ing the proportion of loci typed. The more complete the
genetic data, the greater the success rates.

Rate of typing error. Figure 4d shows the effect of varying
the rate of typing error. Fewer paternity tests were
resolved as the error rate increased. Note that the error
rate is included both in the generation of simulated
genetic data and in the calculation of likelihoods.

The effect of relatives

Thus far, simulations have assumed that candidate males
other than the true father are unrelated to the
mother–father–offspring trio. We explored the effect of
introducing relatives into the pool of candidate males,
examining their effect on confidence in paternity assign-
ments made assuming no relatives were present. We com-
pared the effect of the degree of relatedness when
candidate males were related to the offspring with the
effect when candidate males were related to the true par-
ents. We also explored how the number of half sibs of the
parents affects paternity inference.

Figure 5a shows the effect on confidence of introducing
males related to the offspring, assessed by applying the ∆
criteria in Table 5 to simulated paternity tests including
five related males. Confidence in paternities assigned
using these criteria declined with increasing relatedness.
When mothers were sampled, the overestimate in confi-
dence was small unless full sibs of the offspring (r = 0.5)
were among the candidate males. When mothers were
unsampled, the overestimate in confidence was large if
males related as half sibs or more to the offspring (r ≥ 0.25)
were among the candidate males, suggesting that pater-
nity cannot be resolved between the true father and the
father’s sons, especially sons by the same female. This sit-
uation was studied by Thompson & Meagher (1987).
Whether or not mothers were sampled, success rates
declined only slowly with increasing relatedness (data
not shown). In other words, as relatedness increases, a
similar number of paternities can be assigned but with
reduced confidence.

A more common relatedness problem is posed by the
presence of male relatives of the true father. Figure 5b
shows the effect on confidence when five males related to
the true father were among the candidate males, assessed
as for Fig. 5a. Whether or not mothers were sampled, con-
fidence declined only slowly with increasing relatedness,
and even with five full sibs among the candidate males,
true confidence was 72% when 80% confidence criteria
from Table 5 was applied. Again, success rates declined
only slowly with increasing relatedness (data not shown).
Although we only considered relatives of the true father,
note that when mothers are unsampled, male relatives of
the mother have the same confounding effect on paternity
inference as male relatives of the true father.

There is a straightforward explanation for why the
impact of relatives of the offspring differs from the impact
of relatives of the true father. Assuming no inbreeding, a
full sib of the offspring and a full sib of the true father are
both related to the true father with r = 0.5; a full sib of the
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Fig. 5 The effect of including relatives
among the candidate males on true
confidence of parentage assignments,
varying (a) relatedness of five males to the
offspring, and (b) relatedness of five males
to the true father. Simulation criteria from
a simulation without relatives (Table 5)
were applied to simulated genetic data
containing five relatives of the specified
level of relatedness. The true confidence
was calculated as the ratio Nt/(Nt + Nu).
The dotted line represents the null
hypothesis of no effect of relatives on
confidence. Values used for simulation
parameters are shown in Table 3. The
legend is as for Fig. 3.



offspring is also related to the mother with r = 0.5 whereas
a full sib of the true father is unrelated to the mother. If the
mother is unsampled, a candidate male that is a full sib of
the offspring has a probability of 0.75 of carrying either
the offspring’s paternal or maternal allele or both due to
relatedness, whereas a candidate male that is a full sib of
the true father has a probability of 0.5 of carrying the off-
spring’s paternal allele due to relatedness, and cannot
carry the offspring’s maternal allele due to relatedness
since the candidate male is unrelated to the mother. This
explains why Fig. 5, a and b, differed when mothers were
unsampled. If the mother is sampled, only the offspring’s
paternal alleles are used in the paternity test. Providing
that the paternal allele can always be unambiguously
identified, full sibs of the offspring and full sibs of the true
father have the same impact on paternity inference at a
given locus, both having a probability of 0.5 of carrying
the offspring’s paternal allele due to relatedness. In prac-
tice there are always some loci where the paternal allele
cannot be unambiguously identified, either because of
missing maternal genetic data, or because mother and off-
spring share the same heterozygous genotype (most
likely for loci with few alleles). In these cases, a candidate
male that is a full sib of the offspring has a higher proba-
bility of bearing at least one parental allele than a full sib
of the true father for the same reason as when the mother
is unsampled. This explains why confidence also declined
more steeply in Fig. 5a than in Fig. 5b when mothers were
sampled. Although some inbreeding is likely to occur in
most natural populations, the qualitative conclusions of
this argument are unchanged unless the level of inbreed-
ing is very extreme.

In polygynous species, there may be many half sibs in
each population, and half sibs of the true father may
often be the father’s closest relatives considered as can-
didate males in paternity inference. The likelihood sys-
tem is insensitive to large numbers of half sibs of the
true father. Even with 25 half sibs present (i.e. one third
of all males), true confidence was 72% when 80% confi-
dence criteria from Table 5 was applied (data not
shown).

Paternity inference in Rum red deer

The critical values of ∆ shown in Table 5 were applied in
an analysis of paternity for 875 red deer calves born
between 1982 and 1996 (Table 6), carried out using the
CERVUS program. Paternity was determined with 80%
confidence for 385 of the 655 calves tested with sampled
mothers (59%). Less than half of the 80% confident pater-
nities (28% of all tests) were secure at 95% confidence. For
the 220 paternity tests where the mother was unsampled,
only 67 (30%) gave an 80% confident paternity, and less
than one third of these (9% of all tests) were secure at 95%
confidence. More paternities could be assigned, or confi-
dence in existing paternities increased, by sampling a
larger number of candidate males, adding missing genetic
data or retyping existing data to reduce the frequency of
typing error (Fig. 4). An alternative strategy would be to
type additional loci (our unpublished simulation data).

The success of paternity inference in Rum red deer is in
close agreement with the predictions of the simulation.
Success was high when mothers were sampled, but low
when mothers were unsampled and, in both cases, fewer
paternities were secure at 95% confidence than at 80%
confidence. Differences could arise by cohort-by-cohort
variation in number or sampling of candidate males,
locus-by-locus variation in frequency of missing data or
error rates, unequal distribution of reproductive success
between sampled and unsampled males, inaccurate esti-
mation of the error rate, and relatives of the parents
amongst the candidate males. Despite these potentially
confounding effects, the simulation appears to be a useful
predictive tool.

Discussion

In this paper we extend standard likelihood-based pater-
nity inference to deal with marker mistyping, and develop
a likelihood-based statistic, ∆, for determining paternity
using codominant molecular markers. ∆ is tested against
critical values derived by simulation of paternity inference
using observed marker allele frequencies. The simulation
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Mother sampled n = 655 Mother unsampled n = 220
Number of
paternities 80% 95% 80% 95%

Observed 385 (59%) 184 (28%) 67 (30%) 19 (9%)
Expected 388 (59%) 189 (29%) 56 (25%) 10 (4%)

Table 6 The results of paternity inference
using the program C E RV U S for 875 Rum
red deer calves born between 1982 and
1996. The criteria used to assign paternity
are shown in Table 5. Cases where the
mother was sampled were analysed
separately from those where the mother
was unsampled. The number of
paternities obtained with 80% and 95%
confidence (observed) are listed above the
number of paternities predicted from
success rates shown in Table 5 (expected)



system takes account of the number of candidate males,
the proportion that is sampled, the completeness of
genetic data and the rate of typing error in deriving these
critical values.

The success of paternity inference using our approach is
influenced by two major factors, apart from the number of
candidate males and the quality of markers used. These
factors are whether a sample is available from the mother,
and the level of confidence required of paternities that are
assigned. The results presented here show that there is a
consistently large premium attached to obtaining the
mother’s genotype. Without this, at least 50% more loci are
required to deliver a similar success rate at the same level of
confidence (our unpublished simulation data). The results
also show that there is a clear trade-off between the number
of paternities assigned, and the confidence in those assign-
ments.

It is important to realize that paternities assigned with
80% confidence are more accurate than can be achieved in
most species by direct observation, and are also better than
would be obtained in many studies by a purely exclusion-
ary approach, where confidence in paternity of non-
excluded males is generally unknown. Paternity inference
studies that use a simple exclusionary approach can gener-
ate impressive probabilities of excluding an unrelated can-
didate male from paternity (e.g. Morin et al. 1994).
However, these probabilities can give a misleading
impression of the probability of paternity of a nonex-
cluded male. For the 385 paternities assigned with 80%
confidence in Rum red deer for offspring with sampled
mothers, the median value of the exclusion probability
was 0.9998. Our analysis suggests that the number or poly-
morphism of microsatellite loci required to confidently
(e.g. 95%) identify paternity may be rather higher than
many laboratories, including our own, initially aim for.

Previously published methods for paternity inference
in natural populations assume, often implicitly, that the
entire pool of candidate males has been sampled (e.g.
Meagher 1986; Devlin et al. 1988; Smouse & Meagher
1994). For many studies this is not a satisfactory assump-
tion. Complete sampling of natural populations is diffi-
cult, and it is unreasonable to exclude males from
paternity purely on the basis that they are unsampled.
Tackling the problems posed by unsampled candidate
males has been one of the major motivations for develop-
ing our simulation approach. The key assumption is that
the distribution of reproductive success is the same for
unsampled males as it is for sampled males. While this
may not always be true, for example if alternative male
mating strategies make some males easier to sample than
others, any other assumption in the model would be hard
to justify because appropriate data are unlikely to be
available. If the proportion of candidate males sampled is
low, or if there are a priori reasons for suspecting that

sampled males and unsampled males have different dis-
tributions of reproductive success, caution should be
exercised in extrapolating results of paternity inference
using sampled individuals to the population as a whole.
We also assume that the genotypes of sampled males are
representative of the genotypes of unsampled males.

It is common practice in human paternity testing in
some countries to use paternity likelihood ratios within a
framework of Bayesian inference (Valentin 1980).
Advocates of Bayesian inference point out that the
approach allows prior information on paternity (the prior
probability) to be combined with the genetic likelihood of
paternity to derive a combined probability of paternity
(the posterior probability). This leads immediately to the
question: what is an appropriate prior probability? The
simple answer is that nobody knows, as revealed by the
furious debate that this question, and other questions on
the appropriateness of Bayesian inference in paternity
testing, have provoked in the literature (Walker 1983;
Aickin 1984; Li & Chakravarti 1985; Elston 1986a; Elston
1986b; Li & Chakravarti 1986; Thompson 1986; Valentin
1986). We believe that our approach arrives at a statisti-
cally reasonable solution to the problem of evaluating
confidence in paternity assignments without making
unjustifiable assumptions about the prior probability of
paternity of different males, and we therefore do not
believe that a Bayesian framework is necessary or helpful.

Allowing for errors in likelihood calculations renders
paternity inference relatively insensitive to typing errors.
A system based on principles of exclusion may exclude
the true father at relatively high frequency even when
errors are infrequent, because a single typing error in any
of the mother–father–offspring trio at any of the marker
loci can lead to exclusion. In large-scale typing of
allozymes, errors occur at a rate of the order of 1%
(Lathrop et al. 1983), and if similar rates are true in large-
scale screening of microsatellites, typing errors are likely
to be a major cause of mismatches between offspring and
their true parents. Another recent study (SanCristobal &
Chevalet 1997) examined the effect of mistyping offspring
alleles on likelihood-based paternity inference, both ana-
lytically and by simulation. It was found that allowing for
errors was important, but that the choice of error rate
(providing the value chosen was greater than zero) did
not have a major impact on confidence or success rate,
whether or not the true error rate was greater than zero.
However, we believe that SanCristobal and Chevalet’s
error model, where individual alleles were randomly
replaced with nonidentical alleles without reference to
their respective frequencies, is not as realistic as our error
model, where genotypes are randomly replaced by
genotypes selected under Hardy–Weinberg assumptions,
so that rare genotypes are more likely to be altered by a
typing error than very common genotypes.
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There are other possible causes of mismatches between
parents and their offspring, aside from typing error. A
commonly encountered problem is the presence of null
alleles. At high frequencies these leave a characteristic
signature of repeated homozygote–homozygote mis-
matches between known parent–offspring dyads, and typ-
ing of the affected locus may be discontinued (Pemberton
et al. 1995). Null alleles at low frequencies are harder to
detect, but may be treated as typing errors. Although not
statistically ideal, treating a mismatch generated by a null
allele as an error is preferable to treating it as a basis for
exclusion. Another possible cause of mismatches between
offspring and their true parents is mutation. Although
mutations are alterations of single alleles rather than pairs
of alleles and may not be independent of previous allelic
state (e.g. the stepwise mutation model for microsatellite
markers, Valdes et al. 1993) treating a mutation as an error
is preferable to using it as a basis for exclusion.

A statistic for paternity assignment that is insensitive
to the relatedness structure of the population under
scrutiny is very desirable, as it is the relatedness struc-
ture that the paternity inference is designed to reveal.
Simulations suggest that paternity inference using ∆ is,
in general, robust to the presence of unknown close rela-
tives of the parents among the candidate males. In other
words, no prior knowledge of the relatedness structure
of the population is needed before ∆ can be used in
paternity inference. Furthermore, the concern expressed
by Thompson (1976a, 1976b) and Thompson & Meagher
(1987) that nonexcluded full sibs of the offspring on
average have higher LOD scores than the true father
does not in practice invalidate the use of ∆ in analysis of
paternity in most natural populations for at least three
reasons. First, full sibs of the offspring (sons of the true
father and the same mother) will in many populations
not be considered as candidate males (e.g. because the
reproductive lifespan of males is less than the time for
development from conception to breeding status).
Second, individuals related to one parent only do not
present particular difficulties. Third, half sibs of the par-
ents, probably the most common closest relative in
polygynous species, have only modest effects on pater-
nity inference even when present in large numbers. In
conclusion, close relatives do lead to overestimation of
confidence, but the overestimate is small under many
commonly encountered conditions. The exception is
when full sibs of the offspring (and also half sibs of the
offspring when mothers are unsampled) can be consid-
ered candidate males for paternity.

The results of the simulation are useful for identifying
ways to improve the success of paternity inference. For
example, one can explore whether or not maternal sam-
pling is important for successful paternity inference and
whether gaps or errors in the data set are limiting factors.

A preliminary screen of a small sample of the population
(e.g. 25 individuals) at the chosen marker loci could also
be used to predict whether or not paternity inference on
the full population is likely to be productive. If the mark-
ers appear to be insufficiently informative, the simulation
could be used to estimate how many additional markers
would be needed to achieve a given level of success in
paternity inference.

The primary purpose of this development is to aid
parentage studies in natural animal and plant popula-
tions, although our method is equally applicable to cap-
tive or domestic animals where they are held in sizeable
groups, and to cultivated plants, providing that popula-
tions are in Hardy–Weinberg equilibrium. The same
approach to paternity inference has been applied in har-
bour seals (Phoca vitulina; Coltman et al., in press), and a
similar approach, using an earlier version of the CERVUS

program, has been used to infer paternity in Soay sheep
(Ovis aries; Pemberton et al. 1996), grey seals (Halichoerus
grypus; P. J. Allen, unpublished data) and humpback
whales (Megaptera novaeangliae; Valsecchi 1996). Our
method offers a flexible and practical framework for accu-
rate assessment of paternity at the individual level, and
we believe that it will be a useful tool in paternity infer-
ence for a wide range of species.
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Appendix 1

Derivation of likelihoods that take into account typing
errors

Defining xi to be the unknown, true genotype of individ-
ual i that has been mistyped at the locus under considera-
tion, eqn 2 becomes:

L(H1 gm,ga,go) = (1 – e)3.T(go gm,ga).P(gm).P(ga) +

T(go gm,xa).P(gm).P(xa) +
e(1 – e)2 T(go xm,ga).P(xm).P(ga) + +[T(xo gm,ga).P(gm).P(ga) 

]
T(xo gm,xa).P(gm).P(xa) +

e2(1 – e) T(xo xm,ga).P(xm).P(ga) + +[T(go xm,xa).P(xm).P(xa) 
]

e3.T(xo xm,xa).P(xm).P(xa)

where e is the error rate. As xi can be any genotype, P(xi) = 1
and T(gj xi) = P(gj) for any i, j, and so this simplifies to:

L(H1 gm,ga,go) = (1 – e)3.T(go gm,ga).P(gm).P(ga) + (6)

T(go gm).P(gm) +
e(1 – e)2 [T(go ga).P(ga) + P(gm).P(ga)]+

e2(1 – e) [ P(gm) + P(ga) + P(go)] + e3

Eqn 3 becomes:

L(H2 gm,ga,go) = (1 – e)3.T(go gm).P(gm).P(ga) +

T(go gm).P(gm).P(xa) +
e(1 – e)2 T(go xm).P(xm).P(ga) + +[T(xo gm).P(gm).P(ga) 

]
T(xo gm).P(gm).P(xa) +

e2(1 – e) T(xo xm).P(xm).P(ga) + +[T(go xm).P(xm).P(xa) 
]

e3.T(xo xm).P(xm).P(xa)

which simplifies to:

L(H2 gm,ga,go) = (1 – e)3.T(go gm).P(gm).P(ga) + (7)

T(go gm).P(gm) +
e(1 – e)2 [P(go).P(ga) + P(gm).P(ga)] +

e2(1 – e) [P(gm) + P(ga) + P(go)] + e3

The likelihood ratio is eqn 6 divided by eqn 7, as before,
and reduces to eqn 4 when e = 0.

When mothers are unsampled, errors may occur in the
offspring or the alleged father. The likelihood that the
alleged father is the true father is:

L(H1 ga,go) = (1 – e)2.T(go ga).P(ga) +

e(1 – e)2 [ T(go xa).P(xa) + T(xo ga).P(ga)]+

e2.T(xo xa).P(xa)

which reduces to:

L(H1 ga,go) = (1 – e)2.T(go ga).P(ga) + e(1 – e)[P(go) + P(ga)] + e2

(8)

The likelihood that the alleged father is a male selected at
random is:

L(H2 ga,go) = (1 – e)2.P(go).P(ga) +

e(1 – e) [ P(go).P(xa) + P(xo).P(ga)]+

e2.P(xo).P(xa)

which is:

L(H2 ga,go) = (1 – e)2.P(go).P(ga) + e(1 – e)[P(go) + P(ga)] + e2

(9)

The likelihood ratio is eqn 8 divided by eqn 9, and reduces
to eqn 5 when e = 0.
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Appendix 2

Average probability of exclusion

The average probability of excluding an unrelated indi-
vidual from parentage, given the genotypes of the off-
spring and other parent and assuming Hardy–Weinberg
equilibrium, was derived initially by Jamieson (1965), but
is most easily calculated in the form given by Chakravarti
& Li (1983) and Jamieson (1994). In Chakravarti and Li’s
notation, the average exclusion probability Pl at a locus l
with k codominant alleles is given by:

Pl = a1 – 2a2 + a3 + 3(a2 a3 – a5) – 2(a2
2 – a4)

where

k

an = ∑ pi
n

i=1

and pi is the frequency of allele i, and a1 = 1. Note that this
equation was incorrectly cited in Morin et al. (1994). The
equivalent average probability of excluding an unrelated
individual from parentage given only the genotype of the
offspring is derived below.

For homozygous offspring AA, an exclusion occurs if
the candidate parent is neither AA nor any of the k – 1 het-
erozygotes AX. For heterozygous offspring AB, an exclu-
sion occurs if the candidate parent is neither AA, BB, any
of the k – 1 heterozygotes AX nor any of the k – 1 heterozy-
gotes BX.  The heterozygous candidate parent AB occurs
both in the set of genotypes AX and the set of genotypes
BX. Defining the probability of genotypes AA, AB, AX and
BX as p(ii), p(ij), p(ix) and p(jx) respectively and summing
across all pairwise genotypic combinations, the average
probability of exclusion at locus l, Pl, can be written:

k k 1 k k

Pl = 1 – ∑ ∑ p(ii)p(ix) + – ∑ ∑ p(ij)(p(ix) + p(jx) – p(ij)){ i=1 x=1 2 i≠j x=1 }
Substituting the expected frequencies of the relevant geno-
types, assuming Hardy–Weinberg equilibrium, yields:

k k

Pl = 1 – ∑ pi
2 ∑ 2pi px – pi

2 +{ i=1 ( x=1 )
k k k

∑pi pj ∑ 2pi px – pi
2 + ∑ 2pj px – pj

2 – 2pi pj
i≠j ( x=1 x=1 ) }
where pi is the frequency of allele i as above. Given that

k

∑ pi = 1,
i=1

this simplifies to:

k k

Pl = 1 – ∑ pi
2.pi(2 – pi) + ∑ pi pj(pi + pj)(2 – pi – pj){ i=1 i≠j }

By writing

k k k

∑ pi pj as ∑ pi ∑ pj – pi
i≠j i=1 ( ( j=1 ) )
and similarly for other powers, Pl becomes:

Pl = a1 – 4a2 + 4a3 – 3a4 + 2a2
2 (10)

where

k

an = ∑ pi
n

i=1

as above.
The overall average probability of exclusion across n

independently inherited loci, P, may be calculated in the
usual way:

n

P = 1 – ∏ [1 – Pl]
l=1

Estimating the rate of typing error

Equation 10 may be used in estimating the rate of typing
error if a large number of parent–offspring pairs are
known without error. Defining an error as the replace-
ment of the true genotype with a genotype selected at
random under Hardy–Weinberg assumptions, the rate of
typing error el for locus l is approximately:

1 ml
el ≈ ––– · –––

2Pl Ml

where ml is the observed number of parent–offspring mis-
matches in Ml comparisons, assuming that the probability
of both parent and offspring being mistyped is negligible.
All parent–offspring pairs used in estimating el must be
independent. One must avoid including multiple repre-
sentatives of a half sibship and also avoid including an
individual both as an offspring and as a parent, otherwise
the error rate is liable to be overestimated.

If error is constant across loci, a better estimate of the
underlying error rate, e, is the average across n loci:

1 n

e = –– ∑ el.n l=1

LIKELIHOOD-BASED PATERNITY INFERENCE 655

© 1998 Blackwell Science Ltd, Molecular Ecology, 7, 639–655


