12th International Conference on Partial Orders in Applied Sciences Towards an Understanding of Complex Phenomenon: Applying Partial Order Theory to Multi-Indicator Systems # Measuring gender equality: a comparison of different techniques to build synthetic indicators **Enrico di Bella - University of Genoa, Italy** Filomena Maggino - University of Rome «La Sapienza», Italy Lucia Leporatti – University of Genoa, Italy The Gender Equality Index The regionalization of GEI Posetic R-GEI # The starting point Insight Report The Global Gender Gap Report 2016 #### The different approaches # The EIGE Gender Equality Index (GEI) 6 domains14 sub-domains31 variables # **Gender Equality Index** #### Box 1: Calculating the Gender Equality Index in brief - 1. Selection and processing of indicators. The Gender Equality Index is composed of 31 indicators, divided between 14 sub-domains, which make up the six domains (work, money, knowledge, time, power and health). - 2. Calcutating gender gaps. A single measure of gender equality for the indicators is developed. Gender gaps are calculated and transformed so that the value of 1 can be interpreted as full achievement of gender equality, while any value below 1 indicates some degree of gender inequality in a given indicator. The value of 0 theoretically refers to full inequality. - Calculating the correcting coefficient. Correcting coefficients are calculated and applied to each gender gap. This means that Member States with similar gender gaps are treated differently if their levels of achievement differ. The higher the level of achievement, the lower the correction of the gender gap. - 4. Calculating the gender gap metric. The final metric for each indicator is a combination of the gender gap and the correcting coefficient. It is dimensionless (allowing comparability since measurement units of variables have been eliminated), and bound between [1; 100]. - 5. Calculating the Index (aggregating, weighting, and normalisation) - 1. Aggregation of variables of each sub-domain, creating indices at the subdomain level (value bound [1; 100]), and using arithmetic mean of the metrics of the indicators. - 2. Aggregation of the sub-domains into domains, using geometric means of the scores of sub-domains (value bound [1; 100]). - 3. Aggregating the scores of the domains into overall Gender Equality Index, using geometric means of the six scores of the domain, by applying experts' weights to the domains, obtained through the analytic hierarchy process (AHP). The Gender Equality Index takes a value on a scale of 1 to 100, where value of 100 stands for complete gender equality, and 1 for full gender inequality. $$1 - \Upsilon_{(x_{it})} = 1 - \left| \frac{\bar{X}_{it}^W}{\tilde{X}_{it}^a} - 1 \right|$$ $$\alpha_{(x_{it})} = \left(\frac{\tilde{X}_{it}^T}{\max(\tilde{X}_{it}^T)}\right)^{1/2}$$ $$\Gamma_{(x_{it})} = 1 + \left[\alpha_{(x_{it})} * (1 - \Upsilon_{(x_{it})})\right] * 99$$ $$I_i^t = \prod_{d=1}^6 \left\{ \prod_{s=1}^{nsd} \left[\sum_{v=1}^{n_s} \frac{\Gamma_{(x_{it})}}{n_s} \right]^{\frac{1}{nsd}} \right\}^{w_{AHP_d}}$$ Source: EIGE (2017), Methodological Report #### From GEI to R-GEI - Assessment of the original GEI variables in terms of data sources and relevance at a regional level; - Computation of single indicators at a NUTS2 level using GEI survey microdata (when representative), alternative surveys (when original surveys are not representative) or other official database; - 3. Substitution of meaningless variables with others more consistent with the regional perspective; - 4. Use of the GEI methodology (third edition) to build the R-GEI. | | Description | GEI | R-GEI | |-------------------|--|--------------|--------------| | | Labour Force Survey - LFS (Eurostat) | √ | √ | | | European Working Conditions Surveys – EWCS (Eurofound) | ✓ | × | | Survey | European Union Statistics on Income and Living Conditions - EU-SILC (Eurostat) | √ | √ | | | Aspects of Daily Life – ADL (Istat) | × | \checkmark | | | European Health Interview Survey – EHIS (Eurostat) | √ | × | | e e | Eurostat Education Statistics | ✓ | × | | taba | EIGE Gender Statistics database | \checkmark | × | | Official Database | Eurostat Mortality data | \checkmark | × | |)ffici | Ministero dell'interno | × | \checkmark | | | INPS | × | √ | #### From GEI to R-GEI | DOMAIN | NUMBER OF
VARIABLES | | | |-----------|------------------------|----|--| | | GEI R-GEI | | | | WORK | 5 | 3 | | | MONEY | 4 | 4 | | | KNOWLEDGE | 3 | 3 | | | TIME | 4 | 3 | | | POWER | 8 | 7 | | | HEALTH | 7 | 5 | | | TOTAL | 31 | 25 | | - 10 out of the 31 original variables are exactly based on GEI definition and data, - 15 are based on a definition «as close as possible» to those chosen by EIGE but using data representative at a regional level, - 6 variables could not be properly substituted. #### From GEI to R-GEI | | | | | _ | | |-----------|--|---|--|---|-------------------| | Domain | Sub-
domain | Description of
GEI variable | GEI
Source | Description of
R-GEI variable | R-GEI
Source | | | participation | Full-time equivalent employment rate (% 15 + population) | LFS | Same as GEI | Same as
GEI | | | F | Duration of working life (years, 15+
population) | LFS | Not available at regions | al level | | | | Employed people in education,
human health, and social work
activities (%, 15 + employed) | LFS | Same as GEI | Same as
GEI | | WORK | segregation
and quality | Ability to take an hour or two off
during working hours to take care of
personal or family matter (%,
15+workers) | EWCS | Not available at regional level | | | of work | Career Prospects Index (points, 0-100) | EWCS | Subjective measure between
0-10 based on question "In
the current work, how
satisfied are you with past
and future career
opportunities?" | LFS | | | | financial | Mean monthly earnings (PPS,
working population) | Eurostat
SES | Same as GEI | EU-SILC | | ŒY | resources | Mean equivalised net income (PPS,
16+ population) | EU SILC | Same as GEI | Same as
GEI | | MONEY | economic | Not-at-risk-of-poverty, >= 60% of median income (%, 16 + population) | EU SILC | Same as GEI | Same as
GEI | | | situation | Income distribution S20/S80 (16+
population, %) | EU SILC | Same as GEI | Same as
GEI | | | attainment | Graduates of tertiary education (%,
15+ population) | LFS | Same as GEI | Same as
GEI | | KNOWLEDGE | and
participation | People participating in formal or
non-formal education and training
(%, 15+ population) | LFS | Same as GEI | Same as
GEI | | KNOW | segregation | Tertiary students in the fields of
education, health and welfare,
humanities and art (tertiary students)
(% 15+ population) | Education statistics | Same as GEI | Istat
database | | | care
activities | People caring for and educating their
children or grandchildren, elderly or
people with disabilities, every day
(%, 18+ population) | EWCS | Mean of the number of
minutes devoted to house
work and family keeping
(18 + population) | ADL | | | activities | People doing cooking and/or
housework, every day (%, 18+
population) | EWCS | Not available at regions | al level | | TIME | social | Workers doing sporting, cultural or
leisure activities outside of their
home, at least daily or several times
a week (%, 15 + workers) | EWCS | People who don't smoke
and are not involved in
harmful drinking (i.e. not
drinking often between
meals) (%, 16+ population) | EU-SILC | | | activities | Workers involved in voluntary or
charitable activities, at least once a
month (%, 15+ workers) | EWCS | People doing physical
activities and/or consuming
fruits and vegetables more
than once a day (%, 16+
population) | ADL | | Domain | Sub-
domain | Description of GEI | GEI
Source | Description of R-GEI | R-GEI
Source | |--------|--|--|---------------------------------|--|------------------------------------| | | | Share of ministers (% W, M) | EIGE
database | Share of city major and
municipality assessors
(<15.000 population) (% W,
M) | Italian
Ministry of
Interior | | | | | | Share of city major and
municipality assessors
(>15.000 population) (% W,
M) | Italian
Ministry of
Interior | | | political | Share of members of parliament (% W, M) | EIGE
database | Member of the regional
assemblies / municipal
assembly (< 15.000
population) (% W, M) | Italian
Ministry of
Interior | | ~ | | | | Member of the regional
assemblies / municipal
assembly (> 15.000
population) (% W, M) | Italian
Ministry of
Interior | | POWER | | Share of regional assemblies (% W, M) | EIGE
database | Share of presidents of
regional board and regional
assessors (% W, M) | Italian
Ministry of
Interior | | | economic | Share of boards in largest quoted
companies, supervisory board or
board of directors (% W, M) | EIGE
database | Share of women working in managerial positions | INPS | | | social | Share of board members of Central
Banks (% W, M) | EIGE
database | Share of managerial
positions covered by men
and women (% W, M) | INPS | | | | Share of board members of research
funding organizations (% W, M) | EIGE
database | Not available at region | al level | | | | Share of board members in
publically owned broadcasting
organizations (% W, M) | EIGE
database | Not available at region | al level | | | | Share of board members of highest
decision-making body of the
national Olympic sport organizations
(% W, M) | EIGE
database | Not available at regional level | | | | | Self-perceived health, good or very
good (%, 16+ population) | EU SILC | Same as GEI | Same as
GEI | | | status | Life expectancy in absolute value at birth (years) | EUROSTAT
Mortality
Tables | Same as GEI | ISTAT
database | | | | Healthy life years in absolute value
at birth (years) | EU SILC | Not available at regional level | | | неасти | behaviout People doing physical activities and/or consuming fruits and vegetables (%, 16+ population) | People who don't smoke and are not
involved in harmful drinking (%,
16+ population) | EHIS | People who don't smoke
and are not involved in
harmful drinking (%, 16+
population) | ADL | | | | vegetables (%, 16+ population) | EHIS | People doing physical
activities and/or consuming
fruits and vegetables (%,
16+ population) | ADL | | | | population) | EU SILC | Same as GEI | Same as
GEI | | | access | People without unmet needs for
dental examination (%, 16+
population) | EU SILC | Same as GEI | Same as
GEI | # Introduction The Gender Equality Index The regionalization of GEI Posetic R-GEI #### **R-GEI - RESULTS** | REGION | WORK | MONEY | KNOWLEDGE | HEALTH | TIME | POWER | |--------|-------|-------|-----------|--------|-------|-------| | LOM | 52.24 | 89.07 | 80.84 | 77.87 | 53.53 | 60.37 | | EMR | 54.08 | 87.36 | 75.46 | 77.45 | 53.73 | 60.63 | | TOS | 53.03 | 86.71 | 75.13 | 78.64 | 55.76 | 57.75 | | PIE | 51.10 | 85.14 | 75.98 | 77.70 | 57.61 | 55.80 | | FVG | 49.22 | 86.55 | 76.64 | 78.06 | 58.25 | 49.26 | | TAA | 50.64 | 81.76 | 79.45 | 79.18 | 58.73 | 43.21 | | LAZ | 51.57 | 81.83 | 72.37 | 76.21 | 49.14 | 55.16 | | VEN | 50.30 | 83.41 | 66.28 | 77.01 | 56.33 | 51.52 | | LIG | 45.95 | 84.06 | 72.33 | 76.07 | 53.70 | 52.01 | | MAR | 49.10 | 82.78 | 74.70 | 77.32 | 46.98 | 50.35 | | UMB | 47.96 | 78.57 | 74.42 | 76.69 | 49.69 | 50.66 | | SAR | 39.07 | 72.95 | 68.67 | 76.73 | 58.53 | 50.19 | | VAO | 51.88 | 87.64 | 47.01 | 78.04 | 59.85 | 49.34 | | ABR | 47.40 | 75.27 | 69.51 | 77.09 | 45.25 | 38.68 | | MOL | 42.61 | 69.97 | 78.96 | 75.19 | 41.08 | 42.03 | | PUG | 38.63 | 65.50 | 67.92 | 74.50 | 43.65 | 40.29 | | BAS | 45.03 | 61.34 | 67.62 | 74.69 | 37.79 | 36.82 | | CAL | 37.20 | 57.63 | 69.24 | 72.26 | 39.54 | 40.67 | | CAM | 37.50 | 59.78 | 67.09 | 72.68 | 31.18 | 41.07 | | SIC | 33.99 | 58.45 | 62.52 | 75.99 | 32.70 | 46.61 | | ITALY | 47.18 | 79.99 | 73.43 | 76.76 | 50.69 | 53.59 | | REGION | R-GEI | |--------|-------| | LOM | 66.88 | | EMR | 66.18 | | TOS | 65.65 | | PIE | 64.99 | | FVG | 63.43 | | TAA | 62.33 | | LAZ | 62.26 | | VEN | 61.48 | | LIG | 61.27 | | MAR | 60.83 | | UMB | 60.56 | | SAR | 57.90 | | VAO | 57.89 | | ABR | 55.44 | | MOL | 55.20 | | PUG | 51.90 | | BAS | 50.87 | | CAL | 49.96 | | CAM | 48.33 | | SIC | 48.23 | | ITALY | 61.20 | #### **R-GEI - RESULTS** # The compensation problem The construction of a composite indicator is generally developed through a series of subsequent steps (OECD 2008): - 1) definition of the phenomenon to be measured; - 2) selection of indicators; - 3) normalization of individual indicators; - 4) weighting and aggregation of single indicators. Although all the above-mentioned phases require a series of subjective decisions by the researcher the aggregation step is the one responsible for the compensation issue. # The compensation problem Among the various issues that may arise when dealing with multi-indicator systems, one particularly relevant is the compensation problem. **Compensation**: When a synthetic indicator is, for instance, a weighted sum of the elementary indicators, compensation means that a good value of such an indicator may be the results of a very good value for some indicators which masks potentially critical values for other indicators. # The compensation problem Different approaches have been proposed to mitigate the compensability drawback: - 1. Geometric aggregation (e.g. HDI, UNDP 2010) - 2. Mazziotta-Pareto Index (MPI; Mazziotta and Pareto 2011) - 3. Mean-Min function (Mazziotta and Pareto 2015) - 4. Multi-criteria Decision Analysis (MCDA; Munda and Nardo 2005) - 5. Poset theory (Brüggemann and Patil 2011) - POSAC: Partial Order Scalogram Analysis with base Coordinates (Shye, 1985) Given a scalogram $P_{n\times m}$, the POSAC procedure (Shye, 1985) produces a representation of partial ordering of profiles by two coordinates "as good as possible". The POSAC technique uses an iterative procedure to assign two scores to each profile p_i (i = 1, ..., n), X and Y (called base coordinates), so that the location of the points in the space reflects their partial ordering respect to the indicators mapping $p_i \rightarrow (x_i, y_i)$ such that: $$p_v > p_w \leftrightarrow x_v \ge x_w \text{ and } y_v \ge y_w$$ (1) $$p_{v}||p_{w} \leftrightarrow \begin{cases} x_{v} \geq x_{w} \text{ and } y_{v} \leq y_{w} \\ or \\ x_{v} \leq x_{w} \text{ and } y_{v} \geq y_{w} \end{cases}$$ (2) The POSAC algorithm starts by computing the matrix of weak monotonicity coefficients among all the indicators and it identifies the two indicators that are the least positively correlated. Then, the initial (x_i, y_i) coordinates of ith profile p_i result from the following conditions: $$x_i + y_i = \sum_{j=1}^m \boldsymbol{p}_{ij} \tag{3}$$ $$x_i - y_i = \boldsymbol{p}_{ia} - \boldsymbol{p}_{ib} \tag{4}$$ being p_{ia} and p_{ib} the scores of the two aforesaid least positively correlated indicators for the *i*-th unit. All the values computed using conditions (3) and (4) are transformed to place all profiles within the unit square. This initial approximation is improved minimizing a loss function defined on conditions (1) and (2). A steepest-descent process is carried out in the XY coordinates until it is not possible to improve the solution. The final result is a Cartesian space the top right corner of which represents the best theoretical profile and the bottom left corner represents the worst theoretical profile The line joining the best and the worst theoretical profiles (called Joint axis, or *J*axis: J = X + Y) is the main dimension of the resulting two-dimensional space and its interpretation is straightforward: as we move along it, growing values of the coordinates indicate strict improvement in all rankings at the same time. The line joining the two remaining corners is called Lateral axis or L-axis (L = X - Y) and it represents the incomparability element of the profiles (similar to "horizontal variability" of the MPI). The main «objects» that should be taken into account in a POSAC analysis are: - The POSAC plot - The POSAC gof measure (measured as the proportion of order relations out of all profile pairs, correctly represented by their twofold coordinates; see "stress measure" in MDS) - The correlation matrix of indicators - The correlation table of indicators with J-axis - The correlation table of indicators with L-axis - ... # **POSAC** and Hasse diagrams # **POSAC** and Hasse diagrams # Incomparable: what now? Non random incomparability is a really interesting condition to compare (!) observations: - incomparable situations (opposite to the *J*-axis) may suggest different policy actions; - 2. single deviations from the J-axis may identify compensation situations; - 3. correlations of indicators to the *L*-axis may help to identify the causes of different situations. # Posetic R-GEI 1/2 (POSAC R-GEI) # Posetic R-GEI 2/2 (POSET R-GEI) #### **POSET R-GEI: Work** 0.6 **POSAC Dimension 1** 8.0 | # Indicators | 3 | |---|--------| | Cronbach's Alpha | 0,6529 | | Proportion of Profile Pairs Correctly Represented | 0,869 | | VAR(L-axis values) | 0,016 | 0.0 0.0 0.2 1.0 # **POSET R-GEI: Money** | # Indicators | 4 | |---|--------| | Cronbach's Alpha | 0,9428 | | Proportion of Profile Pairs Correctly Represented | 0,965 | | VAR(L-axis values) | 0,004 | # **POSET R-GEI: Knowledge** #### **POSAC - Knowledge** | # Indicators | 3 | |---|--------| | Cronbach's Alpha | 0,3194 | | Proportion of Profile Pairs Correctly Represented | 0,787 | | VAR(L-axis values) | 0,02 | #### **POSET R-GEI: Time** | # Indicators | 4 | |---|--------| | Cronbach's Alpha | 0,6984 | | Proportion of Profile Pairs Correctly Represented | 0,896 | | VAR(L-axis values) | 0,02 | #### **POSET R-GEI: Power** | # Indicators | 7 | |---|--------| | Cronbach's Alpha | 0,8506 | | Proportion of Profile Pairs Correctly Represented | 0,994 | | VAR(L-axis values) | 0,024 | #### **POSET R-GEI: Health** 0.6 **POSAC Dimension 1** 8.0 | # Indicators | 5 | |---|--------| | Cronbach's Alpha | 0,6877 | | Proportion of Profile Pairs Correctly Represented | 0,801 | | VAR(L-axis values) | 0,034 | 0.0 0.0 0.2 1.0 #### **POSET R-GEI: GLOBAL INDEX** | # Indicators | 6 | |---|--------| | Cronbach's Alpha | 0,9155 | | Proportion of Profile Pairs Correctly Represented | 0,732 | | VAR(L-axis values) | 0,006 | #### **POSET R-GEI: GLOBAL INDEX** | # Indicators | 6 | |---|--------| | Cronbach's Alpha | 0,9155 | | Proportion of Profile Pairs Correctly Represented | 0,732 | | VAR(L-axis values) | 0,06 | | Correlations | POSAC R-GEI | | |--------------|-------------|--------| | Correlations | J axis | L axis | | Health | 0,84 | 0,01 | | Knowledge | 0,87 | 0,03 | | Money | 0,89 | 0,08 | | Power | 0,78 | 0,08 | | Time | 0,84 | 0,31 | | Work | 0,78 | -0,44 | #### **POSET R-GEI: GLOBAL INDEX** #### **RANKINGS COMPARISONS** | | | | Т | |--------|-------|-------------|-------------| | REGION | R-GEI | POSAC R-GEI | POSET R-GEI | | LOM | 1 | 2 | 2 | | EMR | 2 | 3 | 3 | | TOS | 3 | 1 | 1 | | PIE | 4 | 7 | 5 | | FVG | 5 | 9 | 7 | | TAA | 6 | 5 | 6 | | LAZ | 7 | 5 | 10 | | VEN | 8 | 4 | 4 | | LIG | 9 | 11 | 11 | | MAR | 10 | 12 | 12 | | UMB | 11 | 8 | 9 | | SAR | 12 | 10 | 8 | | VAO | 13 | 13 | 13 | | ABR | 14 | 14 | 14 | | MOL | 15 | 15 | 15 | | PUG | 16 | 18 | 16 | | BAS | 17 | 17 | 17 | | CAL | 18 | 20 | 19 | | CAM | 19 | 19 | 19 | | SIC | 20 | 16 | 18 | Spearman rank correlation matrix R-GEI POSAC R-GEI POSAC R-GEI 0,929 POSET R-GEI 0,947 0,968 #### **CONCLUSIONS** - Posetic based synthetic indicators keep all inherent information of the indicators separate avoiding compensation. - 2. In the posetic approach (POSET/POSAC R-GEI) there is no need to specify any weighting of variables/indicators to construct synthetic indicators. - 3. Sources of incomparability are detectable and became sources of information. - 4. POSAC is helpful to map regions and to define policy actions. # **Key references** - OECD (2008). Handbook on constructing composite indicators. Methodology and user guide. Paris: OECD Publications. - Maggino F. Zumbo B.D. (2016) Measuring the Quality of Life and the Construction of Social Indicators, in: Land K.C., Sirgy M.J. and Michalos A.C. (Edts), Handbook of Social Indicators and Quality of Life Research, Springer. - Brüggemann, R., Patil, G. P. (2011). Ranking and prioritization for multi-indicator systems. New York: Springer. - Shye, S. (1985). Multiple scaling. The theory and application of partial order scalogram analysis. Amsterdam: North-Holland.